The hyperbolic triangle centroid

نویسنده

  • Abraham A. Ungar
چکیده

Some gyrocommutative gyrogroups, also known as Bruck loops or K-loops, admit scalar multiplication, turning themselves into gyrovector spaces. The latter, in turn, form the setting for hyperbolic geometry just as vector spaces form the setting for Euclidean geometry. In classical mechanics the centroid of a triangle in velocity space is the velocity of the center of momentum of three massive objects with equal masses located at the triangle vertices. Employing gyrovector space techniques we find in this article that, in full analogy, the centroid of a hyperbolic triangle in relativity velocity space is the velocity of the center of momentum of three massive objects with equal rest masses located at the triangle vertices. Being guided by the relativistic mass correction of moving massive objects in special relativity theory, we express the hyperbolic triangle centroid in terms of the triangle vertices, resulting in a novel hyperbolic triangle centroid identity that captures remarkable analogies with its Euclidean counterpart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS

Complex hyperbolic triangle groups are representations of a hyperbolic (p, q, r) reflection triangle group to the group of holomorphic isometries of complex hyperbolic space H C , where the generators fix complex lines. In this paper, we obtain all the discrete and faithful complex hyperbolic (3, 3, n) triangle groups. Our result solves a conjecture of Schwartz [16] in the case when p = q = 3.

متن کامل

NON-DISCRETE COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE (n, n,∞; k)

A complex hyperbolic triangle group is a group generated by three complex reflections fixing complex slices (complex geodesics) in complex hyperbolic space. Our purpose in this paper is to improve the result in [3] and to discuss discreteness of complex hyperbolic triangle groups of type (n, n,∞; k).

متن کامل

Arithmeticity of complex hyperbolic triangle groups

Complex hyperbolic triangle groups, originally studied by Mostow in building the first nonarithmetic lattices in PU(2, 1), are a natural generalization of the classical triangle groups. A theorem of Takeuchi states that there are only finitely many Fuchsian triangle groups that determine an arithmetic lattice in PSL2(R), so triangle groups are generically nonarithmetic. We prove similar finiten...

متن کامل

Complex Hyperbolic Triangle Groups

The theory of complex hyperbolic discrete groups is still in its childhood but promises to grow into a rich subfield of geometry. In this paper I will discuss some recent progress that has been made on complex hyperbolic deformations of the modular group and, more generally, triangle groups. These are some of the simplest nontrivial complex hyperbolic discrete groups. In particular, I will talk...

متن کامل

Unfaithful complex hyperbolic triangle groups I: Involutions

A complex hyperbolic triangle group is the group of complex hyperbolic isometries generated by complex involutions fixing three complex lines in complex hyperbolic space. Such a group is called equilateral if there is an isometry of order three that cyclically permutes the three complex lines. We consider equilateral triangle groups for which the product of each pair of involutions and the prod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010